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Climate change is presenting one of the biggest challenges for mankind as recent
developments have shown. Since 1990, the global temperature increased by almost
1°C [1] and earth system model projections indicate that temperatures will raise an-
other two to four degrees by 2100 unless drastic measures are taken quickly to avoid
greenhouse gas emissions. Since several decades, scientists have constructed numerical
models to simulate weather and climate. Such models describe physical and biogeo-
chemical processes in the atmosphere, the ocean, the land surface and the cryosphere
and are thus called earth system models (ESM).
In that same period of time the computing power of the worlds largest supercomput-
ers has rocketed upwards as today’s fastest supercomputer offers 170.000 times more
computing power than the fastest one 20 years ago [2, 3]. By utilizing this enormous
computing power, it has become possible to simulate high-resolution weather and cli-
mate models that are capable of predicting extreme events with reasonable accuracy.
As the computing power of modern supercomputers increases rapidly, so does the
complexity of the underlying architecture. Specialized nodes equipped with new tech-
nology like graphical processing units allow a massive reduction of computing time
for many problem classes, but do also introduce the challenge to work with a het-
erogeneous architecture. ESMs were hitherto designed for homogeneous architectures
based central processing units. Along with the increased computational demands of
ESMs, the amount of generated data does as well, leading to the phenomenon that
the cost of data movement starts to dominate the overall cost of computation. Any
new programming paradigm for ESMs must therefore try to minimize massive data
transfers, e.g. by utilizing data locality as it will be demonstrated in this work.
Facing the challenges of modern supercomputer architecture and the need for more
flexible and modular models, completely new programming concepts are needed, as
demonstrated by the Helmholtz project Pilot Lab Exascale Earth System Modelling
(PL-ExaESM) [4] in which context this work has been conducted.
As a potential solution for these challenges a new, asynchronous scheduling method
for modular ESM components has been tested in a sandbox environment and evalu-
ated with respects to performance, scalability and flexibility. Asynchronous schedul-
ing allows for a better exploitation of the heterogeneous resources of a modern HPC
system. Through careful consideration of data flow paths across the coupled pseudo-
ESM components, data movement could be reduced by more than 50% compared to
a traditional sequential ESM workflow.
Furthermore, running different example workflows showed a high efficiency gain for
complex workflows when increasing the number of nodes used for computation.
The results obtained here are promising, however not yet sufficient to propose asyn-
chronous scheduling as the one new ESM paradigm to be used for upcoming exascale
earth system modelling. Further development and investigation following the ap-
proach proposed in this work is required to evaluate the usability on different archi-
tectures and comparing it to different approaches meeting the introduced challenges
of modern ESM development.





Nomenclature
API Application Programming Interface

CESM Community Earth System Model

CPU Central Processing Unit

DAG Directed Acyclic Graph

ESM Earth System Model

GPU Graphics Processing Unit

gRPC gRPC Remote Procedure Calls

HPC High Performance Computing

IO Input/Output

JUWELS Jülich Wizard for European Leadership Science

MPI Message Passing Interface

NetCDF Network Common Data Form

OpenMP Open Multi-Processing

RPC Remote Procedure Call

Slurm Simple Linux Utility for Resource Management/Slurm Workload
Manager

TPU Tensor Processing Unit
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1 Introduction

1.1 Problem statement
In recent years the computing power of modern supercomputers increased to a point
where it enables development of climate and weather simulations with high temporal
and spatial resolution which are now also capable of predicting extreme events with
reasonable accuracy. The goal for future earth system model (ESM) development will
now be to achieve a global spatial resolution of 1 kilometer, which would allow explicit
calculation of physical equations to reduce the amount of necessary parametrizations.
This would however require an increase in processing power ESMs are utilizing of
about 1000 times. To allow ESMs to use such an enormous computing power, all
workflows have to be perfectly optimized for the hardware powering the computa-
tion. Modern ESMs will not only have to adapt to changing architectures caused
by reaching the physical limitations regarding the size of transistors, but also han-
dle enormous amounts of data that will be generated. Furthermore, state-of-the-art
technologies like machine-learning tend to augment or even replace numerical solvers
of differential equations introducing a new challenge for traditional monolithic ESMs.
Therefore, a novel approach to modern earth system modeling will be examined in
this thesis.

1.2 Earth System Modeling workflows

1.2.1 What are Earth System Models?
The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)
defines ESMs as follows [5]:

A coupled climate model is a computer code that estimates the solution to
differential equations of fluid motion and thermodynamics to obtain time
and space dependent values for temperature, winds and currents, moisture
and/or salinity and pressure in the atmosphere and ocean. Components
of a climate model simulate the atmosphere, the ocean, sea, ice, the land
surface and the vegetation on land and the biogeochemistry of the ocean.

Earth System Modeling describes the assembly of earth system models as well as
the creation of workflows needed in order to read, exchange and write data which is
used and generated by these models.
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1 Introduction

When assembling multiple models, each model will be called component in the re-
sulting coupled model.

Figure 1.1: An Earth-System-Model consists of multiple interconnected components
that exchange information to model a complete earth system. [6, p. 24]

Due to the complex interactions between various earth system components, an
ESM consists of many different modules, which interact with each other. As seen in
figure 1.1, the different components add up to a workflow consisting of directional
dependencies between the components, which effectively leads to extensive exchange
of generated data.
As these workflows do therefore require up to terabytes of disk space and many
gigabytes of concurrent memory and run computationally intensive simulations, su-
percomputers or large clusters are necessary to run the simulations in a reasonable
time. Execution time is very important for ESM workflows as results will only be
meaningful when every component generates and receives data regularly. Extensive
communication between coupled compartments and spatial regions in the ESM leads
to the necessity of a remarkably high bandwidth to exchange massive amounts of
data without excessively restraining computation. Such a high bandwidth between
computation units can presently only be guaranteed by supercomputing systems that,
in contrast to cloud solutions, interconnect nodes directly for high-speed communica-
tion.
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1.2 Earth System Modeling workflows

Traditional coupled models, like the Community Earth System Model (CESM) [7],
are built for a specific architecture which makes it very difficult to adapt them to
new computer systems and oftentimes not dynamic when it comes to the size of the
allocation on a supercomputing system.
Nowadays, most supercomputers offer nodes equipped with graphics processing units
(GPUs) which are able to run some simulations significantly faster than central pro-
cessing units (CPUs) that are normally used for computation. However, the number
of these special nodes is limited on most systems which leads to the special case where
one compute job consists of multiple types of nodes. Legacy models are mostly not
able to exploit these changing, or in general heterogeneous, architectures.
Using tools like the Common Infrastructure for Modeling the Earth (CIME) [8] mono-
lithic models are created that strongly couple multiple components together to a static
single executable with an enormous code size. This does usually result in an appli-
cation that trades flexibility for performance and usually runs very efficiently on the
specific architecture it was built for. Once built however, the new model forms a
blackbox that can not be modified anymore without rebuilding the whole model.
This makes the model very hard to extend and does not allow any dynamic changes
during runtime.
Altogether the result is a long developmental period due to the fact that typical trial
and error development approaches lead to many completely new builds of the coupled
model even when only minimal changes were made to the component structure or
the workflow. Additionally, the development architecture has to match the one used
in production which may lead to unpredictable results when porting the model to
another machine as the scale of the model is predefined and static and can therefore
not be scaled up on the production architecture without rebuilding the model.

1.2.2 Concept study: Future ESM workflows
Considering the drawbacks of static, monolithic ESMs, it will be interesting to inves-
tigate if the new generation of ESM workflows can become more dynamic and flexible
on every architecture to therefore decrease development times.
Instead of coupling components directly (Peer-to-Peer), using the Hub-and-Spoke
paradigm [9] where multiple components (spokes) are connected to one central process
(hub), components could be coupled weakly to allow dynamic addition and removal
of any component, even at runtime.
Each component would then use its own workflow that is isolated from all other com-
ponents. This includes both reading from and writing data on a node as well as
the actual computation in between. This forms a self-contained application for each
component that can be built separately from any other component. By not building
the coupled model with all components at once, the whole workflow would get mod-
ular and dynamic. Dataflow and execution of components have to be managed at
runtime and can therefore not run synchronously in a predefined order anymore but
requires asynchronous data and task management. Asynchronous data management
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and task scheduling allows dynamic changes of components and a high scalability.
Asynchronous scheduling will be covered in-depth in section 1.4.
By designing the ESM workflow this way, it is possible to adjust the number of re-
sources used for a run of the simulation at the moment when submitting the job or
optionally even during runtime without having to rebuild the model. This reduces de-
velopment times significantly as the workflow can be easily tested using smaller node
allocations compared to the one that will be used in production. Apart from faster it-
eration it does also enable running the workflow on changing and even heterogeneous
architectures. As each component will be self-contained and isolated, it is possible
to run particular components on specific nodes that are, for example, equipped with
GPUs or larger memory capacity.
Furthermore, the resulting flexibility of using loosely coupled components opens up
entirely novel possibilities of earth system modeling, such as dynamic insertion of
ensemble-simulations, on-demand coupling of model components, online-visualization,
etc. all at runtime.

1.3 Supercomputer architecture
The first computer ever considered supercomputer, called Control Data Corporation
(CDC) 6600, reached a peak performance of 3 million floating point operations per sec-
ond (flops) in 1964 [10]. Since then the computing power of supercomputers steadily
increased as the number of transistors in CPUs doubled about every two years ac-
cording to Moore’s law [11]. This trend has been ongoing for about 50 years now,
however, today transistors can only hardly be shrunk any further and people start
claiming the end of Moore’s law [12].
As a consequence, modern supercomputers start to introduce different ways of in-
creasing computational power and improving the overall architecture. Accelerators
are being used next to traditional CPUs such as GPUs leading to incredible peak
performances of up to 415.5 petaflops [3].
To develop new solutions for ESMs, these and other new components, such as highly
efficient storage systems, of a supercomputer must be analyzed and their character-
istic properties must be known in order to write efficient code.

1.3.1 JUWELS supercomputer
This work was performed in the Jülich Supercomputing Centre (JSC) utilizing the
Jülich Wizard for European Leadership Science (JUWELS) supercomputer [13].
The supercomputer provides a cluster of multiple different nodes, ranging from stan-
dard compute nodes to visualization nodes with up to 768 GB of main memory, two
terabytes of on-board disk space and high-performance Nvidia Pascal P100 GPUs.
The standard compute nodes are equipped with 2 Dual Intel Xeon Platinum 8168
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1.3 Supercomputer architecture

CPUs each with 24 cores at a clock rate of 2.7 GHz and up to 96 threads per node
using Intel Hyperthreading technology as well as 96 GB of 2666 MHz main memory.
The system is being operated by the CentOS 7 Linux distribution.
All nodes are connected using Infiniband technology allowing high-bandwidth inter-
node communication with a throughput of up to 100 GB/s. The supercomputer
is attached to the Jülich Storage Cluster (JUST) which serves as central storage
provider using a parallel file system from IBM, called Spectrum Scale, which is used
on the system to provide a centralized storage method that can be accessed from all
nodes. It offers a capacity of 52 petabytes and a peak bandwidth of 380 GB/s citejust.

1.3.2 Heterogeneous architecture

Many modern supercomputers, such as the JUWELS supercomputer, begin to offer a
variety of different types of nodes having varying numbers of CPUs, being equipped
with GPUs, having an increased memory capacity or even providing on-node disk
space. However, there are often far less of these specialized nodes available on the
system. Therefore, if a workflow wants to make use of these specialized nodes to po-
tentially reduce computation times of specific components, it is required to combine
different node types in a single node allocation. Using these heterogeneous architec-
tures efficiently in an application is a very challenging task though.
The central hub-process now also has to manage all available nodes and assign com-
ponents to specific nodes explicitly while keeping track of utilization of each node.

1.3.3 Data intensive tasks

ESM components can be very complex, but the code itself is often highly optimized
to compute results as fast and efficiently as possible. However, especially when com-
bining multiple components, they are not optimized for the architecture they will
run on. Most traditional ESMs simply combine existing efficient components without
specifically optimizing the resulting coupled workflow which leads to poor efficiency
on specific architectures.
The main bottleneck of coupled ESMs is usually presented by long IO times as up
to terabytes of data will be exchanged between the different components in a single
run of the workflow which often leads to the cost of data movement dominating the
overall cost of computation.
As by today big data became a relevant matter in most fields of research, the super-
computer architecture gets adapted to these novel demands and offers both hard- and
software solutions to optimize such data-intensive workflows.
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1.3.3.1 Hierarchical storage architecture

Many supercomputer architectures offer smaller storage systems with less latency
and often also higher bandwidth compared to the ones with larger capacity. On the
JUWELS supercomputer there is a shared High-Performance Storage (HPST) next
to the standard shared scratch storage. The HPST system provides less latency by
caching frequently used data in a fast low-capacity storage to reduce access times.
Some supercomputing systems also provide actual disk space on each node next to
the node’s memory. Temporarily storing data on nodes where the data will be used
repeatedly can significantly reduce IO times.

1.3.3.2 On-node memory

On many supercomputers there are no on-node disks, however each node will always
have its own memory. On Unix-like operating systems it is possible to actively store
data on nodes by utilizing temporary in-memory filesystems like tmpfs. This allows
reading and writing data from a filesystem which is required by nearly every ESM
component, while preserving the unbeatable performance that volatile random access
memory (RAM) provides.
Mounting filesystems on these systems typically requires root privileges which most
supercomputer users will not own. A solution to this problem is provided by the
in-memory temporary filesystem that is mounted at /dev/shm on most Unix-like op-
erating systems, such as the CentOS that powers the JUWELS supercomputer. This
mount enables easy access to each node’s memory and lets the workflow read and
write files just like it would on any other filesystem.

1.3.3.3 Parallel filesystems

Assisting with the need for flexible, high-performance filesystems, many solutions for
parallel multi-node filesystems have been created, the most promising one on high-
performance computing (HPC) systems probably being BeeGFS [14]. BeeGFS is a
parallel cluster filesystem that essentially combines several filesystems of nearly any
type to a single combined parallel cluster filesystem. However, as BeeGFS was not
available on the JUWELS supercomputer at the time this work was performed, it has
not been used or further discussed in this thesis.

1.4 Synchronous vs asynchronous scheduling
In this work instead of using an existing job scheduler like Slurm [15] to manage the
execution of the different components, a new scheduler has been developed to have
more control over the scheduling behavior. To avoid Slurm scheduling the different
tasks, a job allocation with a sufficient number of compute nodes will be allocated
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1.4 Synchronous vs asynchronous scheduling

for the whole workflow in advance. The scheduler then uses the assigned nodes of
this allocation itself by scheduling tasks efficiently avoiding idling of as many CPUs
as possible. This step has been necessary for multiple reasons. First of all, when sub-
mitting a job to slurm, is is unclear at which point in time this job will be scheduled
and therefore when the task will run. For tasks depending on other tasks, this can
easily result in highly inefficient scheduling compared to self-controlled scheduling.
Furthermore, when submitting a job, random nodes will be allocated which makes it
impossible to benefit from data locality by storing data on on-node memory.
The newly created scheduler works asynchronously and schedules tasks based on
events. Synchronous schedulers on the other hand are best suited for periodic tasks
with job-wide synchronism by using a common clock. While periodicity definitely
exists in ESM workflows, asynchronism adds the option to react differently to un-
foreseen events, e.g. a hurricane, by deviating from a fixed, synchronous schedule.
The additional flexibility makes it easier to prioritize further analysis of these events
over other routine calculations by, for example, running an ensemble of tasks in that
specific region where the event occured. Such events are typically analyzed using
ensembles that run simulations for the same, fixed region either using slightly varying
input parameters or generate data for a different time period.

1.4.1 Comparison of scheduling approaches
Asynchronous scheduling is a well-established software paradigm, which is however
rarely applied in ESM codes, largely due to legacy reasons. It promises several ad-
vantages for future ESM workflows including better average case performance, more
accurate runtime estimation and most importantly significantly more flexibility.
As the time a component takes to run one iteration is a priori unknown and can
vary a lot depending on the resources it was assigned, it would be difficult or even
impossible to schedule the tasks efficiently in a synchronous way which would imply
setting a fixed order and timing for all tasks. If specific tasks would always wait for
other tasks, long idle times would occur which in the worst case leads to very poor
performance. In the best case, however, synchronous scheduling should perform bet-
ter compared to asynchronous scheduling, as the latter always involves some overhead
due to additional scheduling logic at runtime instead of scheduling all tasks before
the actual execution.
Using asynchronous scheduling, idle times can be reduced to almost zero as tasks can
be scheduled freely and do not have to follow each other directly. Therefore tasks
requiring few CPUs can be used to fill holes while larger tasks would be prioritized
to let those run if possible and only use smaller tasks otherwise. In both scheduling
scenarios however, a task depending on the results of another task will have to wait
for it to finish before it can run. The timing of task executions will therefore always
depend on inter-process dependencies.
Efficient data management presents a key factor for high-performance asynchronous
schedulers. As tasks can in theory run on an arbitrary node, the scheduler will try to
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run tasks on the same node where their input data is located. This can significantly
reduce IO times compared to synchronous schedulers that cannot make use of data
locality.
When scheduling asynchronously, the efficiency can be further improved at runtime
as the computing time of one iteration of a component can be measured once and will
then be estimated relatively accurate for all following iterations. While synchronous
schedulers can schedule tasks perfectly without any overhead when the computing
time of every component is known beforehand. If the computing time is unknown
or changes dynamically due to a task getting assigned less or more resources, the
scheduler cannot accurately estimate the computing time anymore. Therefore, it will
produce less efficient results compared to an asynchronous scheduler even in the av-
erage case.
A significant advantage of asynchronous scheduling is its capability to use any archi-
tecture to its full extent at any time. In case of heterogeneous architectures, the tasks
can be scheduled to the nodes they run most efficient on. If, for example, a node
equipped with a GPU becomes available, the scheduler can dynamically at runtime
decide to run a specific task on that node instead of a simple node consisting of CPUs
only.
As the scheduler can easily adapt to new tasks that are waiting to get included in
the schedule, completely new tasks can be added during runtime and could even get
prioritized over other tasks. Tasks can also represent any other form of component
and use the generated data for online data visualization, post-processing of results,
or as inputs to a finer-resolved regional simulation, for instance.
As tasks can be added during runtime, they can of course also be removed or replaced.
This makes components interchangeable, one could, for example, swap a numerical
model component by a machine learning model or replace a low resolution model with
a high resolution one for a specific region. This will be especially important for the
simulation of extreme events (e.g. heavy precipitation) that require very high spatial
and temporal resolutions.

1.5 Study concept
The goal of this thesis is to evaluate the possible advantages of using an asynchronous
scheduling approach for future ESM workflow development compared to traditional
synchronous scheduling.
Therefore, the concept for an asynchronous scheduler had been designed from the
ground up and afterwards implemented using the Python programming language.
For subsequent benchmarking, a sandbox ESM workflow had been created and im-
plemented which already profited from the several optimizations that were made in
conjunction with the asynchronous scheduler. Finally, some defined benchmarks had
been evaluated, namely memory efficiency, performance compared to a synchronous
version, scalability and flexibility.
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2 Methods

2.1 Sandbox asynchronous ESM workflow
As discussed in the previous chapter, ESM workflows are enormously complex and
effectively evaluating the functionality, as well as benchmarking whether the desired
results can be achieved using this new approach for ESM, is nearly impossible when
starting with a complete ESM workflow. Instead, a sandbox workflow will be created,
simulating the runtime and IO behavior of typical ESM components.
To accurately simulate ESM workflows in their entirety, all possible components a
workflow may consist of have to be substituted by here called tasks emulating their
behavior and runtime characteristics.
All tasks as well as the scheduler itself are implemented using the Python program-
ming language [source-code]. Keep in mind that typically ESM components are
written in either C++ or Fortran for increased performance, however python scripts
and compiled Fortran or C++ scripts can be used interchangeably as both can be
directly invoked from a shell by using python’s subprocess module.
To be concrete, these tasks have to emulate the following functionality.

2.1.1 Functionality
2.1.1.1 Reading data

Almost every component in an ESM workflow will read in some data at some point
during its lifetime. Reading in data is as simple as opening the file, as all data
management will be handled by the Scheduler itself. More information about data
handling can be found in section 2.2.3.
In this sandbox scenario, python’s built-in open routine in combination with the 'rb'
binary read option will be used to read in data from a file.

2.1.1.2 Writing data

Most components will generate data, usually after processing some input data. How-
ever, not all components will actually write data, a visualization component, for
example, will probably not write any output.
In this sandbox scenario, python’s built-in open routine in combination with the 'wb'
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binary write option will be used to write data into a file.

2.1.1.3 Sending and receiving data

Due to the asynchronism of task execution, no direct communication between tasks
is possible, as that would require them to run synchronously for the time of commu-
nication. As asynchronous tasks do not share the same clock, synchronous execution
can not be achieved.
However, tasks can communicate indirectly using data they produce and consume.
The producer and consumer design pattern is a commonly used pattern when work-
ing with tasks that run independently from each other. The task that wants to send
data, the producer, writes its data into a file without knowing which other task, the
consumer, will receive the data by simply reading from the file.
By implementing so called data brokers, data will actively be conveyed between the
tasks. They allow tasks to inform other tasks about their newly generated data with-
out having to directly communicate with them.
Brokers could in theory even influence the scheduling of other tasks, for example by
asking the central scheduling task to increase priority of a data consumer task. More
information about data brokers will be provided in section 2.2.1.

2.1.1.4 Processing data

Between reading and writing data, most tasks will process the input to generate their
output data.
That process can be classified to two sub-classes, exact and iterative algorithms. Some
mathematical problems can be solved exactly with diverse algorithms that will take
a constant amount of time.
To simulate these kind of algorithms, python’s sleep routine of the time module
is used with a constant time value representing the time it takes for the complete
calculation to process.
Many problems cannot be solved directly and therefore require implicit algorithms
that find an approximate solution for the problem. Most of these algorithms will run
multiple iterations, stopping the calculation as soon as some criteria is met. The num-
ber of iterations needed is not known beforehand resulting in an inconstant amount
of time being needed for the calculation.
To simulate these kind of algorithms, again the sleep routine is used. This time,
the amount of time the process will sleep is not a constant value, but instead a mul-
tiplication of a fixed value representing the time one iteration takes to process and
a randomly generated number within a reasonable range representing the number of
iterations being run.

12
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2.1.2 Scheduler and model time

Understanding the difference between scheduler and model time in an asynchronous
scheduling scenario can be quite confusing at first. One would probably expect both
to be the same in the sense that the model time runs concurrent to the scheduler
time. That would mean at any given point in time one could get an exact value for
the model time given the scheduler time and vice versa. However, as there is no shared
clock between the different tasks the time step a task is currently simulating does not
have to match the time step of other tasks. And not only the time step can vary but
even the whole time interval can be different. This can happen when a task is getting
scheduled which is ahead of other tasks in time. As the dependencies between tasks
usually are non-linear, it will happen that some tasks currently do not have to wait
for any input data and can therefore already simulate the next time interval. The
difference in model time between the tasks will usually not vary too much though, as
sooner or later a task will have to wait for input from another task again.

2.1.3 Workflow

The sandbox workflow is run on the JUWELS supercomputer only using compute
nodes within the scope of this work. However, the ability to use any compute node
without any prior configuration already implies that the scheduler is designed in a
flexible way, therefore not being limited to special nodes or a homogeneous node con-
figuration.

To cover all functionality of ESM components, four different tasks are needed which
are combined to a single workflow as shown in figure 2.1. The initial task, called
Read/Write component, starts with a dataset of about 300 megabytes in size.
In reality, most components will run continuously instead of only running once. For
testing purposes however, all components are only run once.

Most ESM components usually parallelize the computation by using multiple cores
on one node or running multiple nodes concurrently. To simulate this behavior, all
tasks except the data broker tasks will be provided multiple cores and partly also
multiple nodes.
Typically, ESM components combine most of the above functionality at once, e.g.
read data, process that data, write data to a file and finally inform other components
about the generated data.
However, for testing purposes the functionality will be isolated as much as possible
as it does allow for more accurate benchmarking and evaluation. In the following
chapters, this workflow will be referred to as small workflow.
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Read/Write
component

Constant time
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Variable time
component
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Constant time
component ensemble

x10
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Figure 2.1: All components and their dependencies for the example sandbox
workflow deployed here.

2.1.3.1 Read/Write component

First of all, one task is required that both reads and writes data.
The task’s code is as simple as the following few lines:

1 input_path = sys.argv[1]
2 output_path = sys.argv[2]
3 os.makedirs(os.path.dirname(output_path), exist_ok=True)
4 shutil.copyfile(input_path, output_path)

Listing 2.1: read_write.py

After making sure all the directories in the output path exist in line 3, the input
data will be copied to the output path, effectively reading in the data and instantly
writing it again.

2.1.3.2 Send/Receive component

Secondly, a data broker task is required to simulate sending and receiving data across
tasks. This task will be run multiple times in the workflow, concretely each time one
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task, that is not a data broker, finishes its execution.
In this implementation of the workflow, the communication uses a push concept. A
task will push the generated data so any other task can use it, actively offering their
data without having any task demanding it, not even knowing whether the data
will ever be used by any other task. The opposite would be a pull concept where
tasks actively demand data instead of only taking what they are getting offered.
Data that a task wants to pull can be generated by any task, still preserving the
task-independence of asynchronous workflows. Both concepts can be integrated quite
well in asynchronous scheduling and both have different advantages. In a perfectly
designed scheduler, both concepts can even coexist and be used simultaneously. How-
ever, implementing the pull concept does require the scheduler to implement some
more advanced features as well, such as runtime estimation, as a task demanding data
will have to wait for another task generating this data getting scheduled first, being
directly followed by the task that demanded that data in a perfect scenario. That
adds a lot of complexity to the scheduler, which does exceed the scope of this work.
As the source code for the data broker task is a lot more complex compared to the
other tasks, it will therefore not be examined in detail in this section. Instead, the
source code can be found in the appendix in chapter A.

2.1.3.3 Constant time component

Thirdly, a task emulating a component utilizing an exact algorithm will be deployed.
Leaving the import statements out, the code for the task looks as follows:

1 input_path = sys.argv[1]
2 output_path = sys.argv[2]
3
4 open(input_path, ’rb’).close()
5
6 time.sleep(30)
7
8 if comm.Get_rank() == 0:
9 os.makedirs(os.path.dirname(output_path), exist_ok=True)

10 open(output_path, ’wb’).close()

Listing 2.2: constant_time.py

The task will be run using 12 cores on a single node. However, in this example
scenario, there is no actual parallelization, so using more cores would not speed up
the process. After reading in the input data, the task will sleep for a constant amount
of time, 30 seconds to be exact, before writing some output data which in this case
is just an empty file as this data will not be used anymore by any other task.
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2.1.3.4 Variable time component

Leaving the import statements out, the code for the task simulating an iterative
algorithm looks as follows:

1 input_path = sys.argv[1]
2 output_path = sys.argv[2]
3
4 comm = mpi4py.MPI.COMM_WORLD
5
6 time_to_sleep = 0
7 if comm.Get_rank() == 0:
8 open(input_path, ’rb’)
9 time_to_sleep = 5∗(random.randrange(10)+1)

10
11 time_to_sleep = comm.bcast(time_to_sleep, root=0)
12
13 time.sleep(time_to_sleep)
14
15 comm.Barrier()
16
17 if comm.Get_rank() == 0:
18 os.makedirs(os.path.dirname(output_path), exist_ok=True)
19 open(output_path, ’wb’).close()

Listing 2.3: variable_time.py

The task will be run using 48 cores on two nodes. Parallelization is realized using
the python bindings of MPI, however there is no actual parallelization implemented,
therefore increasing the amount of parallel processes does not speed up the execution.
After reading in the input data, all processes of the task will sleep for a random
amount of time, 5 seconds times a random number between 1 and 10 to be exact,
before writing some output data which in this case simply is an empty file again.

2.1.4 Running ensembles
Many ESM workflows do also run so-called ensembles. Multiple instances of a compo-
nent are run with slightly different parameters forming a component ensemble. The
ensemble runs concurrently to the regular version of the component and will only run
once.
Ensemble runs are triggered by special events, e.g. some anomaly in the data that
might indicate extreme events like a hurricane. Therefore, unlike their regular coun-
terparts, they do not repeat execution after finishing but are run only once.
The sandbox workflow does also simulate such an ensemble run by running the con-
stant time task multiple times, 10 times to be exact. An ensemble run will always
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be finished up by the run of an aggregation task using the output of all ensemble
members as input.

2.2 Master-worker parallelization
For this work use of the Hub-and-Spoke paradigm [9] has been selected which is better
known as master-worker parallelization pattern on HPC systems. A so-called master
has control over a set of workers, which in this work are called tasks.
The master process does not only schedule task execution, but also manages all com-
munication in the workflow. Tasks will run independently from each other and have
no information about other tasks that are running. Thus they cannot direclty com-
municate with other tasks. Communication between tasks will be handled using data.
The master is also responsible for data management, which includes tracking available
memory space on all nodes of the allocation as well as moving data across nodes.

2.2.1 Structure
There are three main types of processes. First, the master process which will be
started as main process scheduling the execution of all tasks. Second, a task process
which represents any kind of worker, e.g. an ESM component or a visualization.
Lastly, a data brokering process which will be started after the execution for each
task in case that there are any other tasks interested in the data generated by that
task.
Tasks will be specified using the human-readable data-serialization language YAML [16]
with a specific structure. These specifications include properties like package require-
ments, program path, dependencies, etc. A task combines the actual application that
will be run, the data input it needs and the output it generates. This allows having
data dependencies between different tasks, while a task can depend on an unlimited
amount of data generated by other tasks which this application uses as input data.
A data broker is a special kind of task that analyzes generated data after each run
of a task and notifies the master if any other tasks are interested in this data using
predefined analysis scripts provided in the dependencies section of the task’s specifi-
cation file.
A broker will always be started by the master process itself on the same node that
the corresponding task ran on. The result of the analysis which will be run using the
aforesaid data will be a boolean value that indicates whether the checked task will be
added to the queue using this data as input.
Depending on the data there might be an opportunity to run an ensemble of tasks. If
a task should be able to be run as ensemble, a different analysis has to be provided to
check if a task should not be executed normally but in an ensemble instead. It is also
required to provide a method to prepare data for the different runs of the ensemble.
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The master process is also responsible for keeping track of the corresponding nodes
a task runs on. Next to the task itself, the master will also store a pointer to the
data generated by any process in case it is needed by any task in the future. All data
will be managed by the master process and removed on all nodes as soon as it is not
needed by other tasks anymore. This does introduce a strong factor influencing the
scheduling as each node will have a maximum amount of memory that can be used
for data. The closer a node gets to that threshold, the higher the scheduler prioritizes
running tasks that will use the data on that node to free memory again.
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Figure 2.2: A snapshot of some potential ESM tasks distributed on different nodes
of a heterogeneous job allocation on JUWELS as well as in the task

queue which contains tasks that are currently getting scheduled.

2.2.2 Communication
There is no direct communication between tasks themselves or between a task and
the master process. The master will start a task, add the task to the list of currently
running tasks, wait until it has finished and potentially generated some data, and
afterwards remove the task from the internal list of running tasks. Finally, after the
end of the task’s lifetime, a data broker will be initialized. During the whole lifetime
of the task, there is no communication between it and the master at all, not even
initially. Tasks will be initialized using the task specification in form of the provided
YAML file for each task and the input data the task is interested in. As soon as the
task finished after potentially writing its output data, this data will be used to trigger
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the execution of new tasks, altogether requiring no communication.
There still is some communication required though, namely between the master pro-
cess and data brokers as well as between the master process and the user making use
of the command line interface (CLI) that has been created within the scope of this
work.
As the master process will participate in all possible communication, a straightfor-
ward client-server approach could be used to handle communication. As current
industry standard for intra-datacenter communication, gRPC has been used for all
communication purposes.

2.2.2.1 gRPC

The open-source high performance remote procedure call (RPC) framework gRPC is
a Cloud Native Computing Foundation incubating project developed by Google [17].
It makes use of protocol buffers, a fast binary serialization toolset and language. Re-
mote procedure calls cause execution of subroutines in a different address space, e.g.
a different compute node. Many RPC systems use so-called services to define the
methods that will be called remotely as well as the data structure used to transmit
data to the remote system. In gRPC these services are defined using so-called proto-
buf files, describing both the service interface and structure of the payload messages
using the protocol buffer interface-definition language.
Here gRPC is used to enable communication between the master process and data
broker as well as the CLI process. Therefore, two seperate services were defined.
First, a service being responsible for communication from and to data brokers. This
service defines two procedures, the first one being called to initialize the data broker,
the second one to report the analysis results back from the broker to the master ser-
vice.
Second, a service sending commands to the master process from the command line.
Several procedures were defined in this service, while each of these procedures sends
a message with varying payload to the master process and in some cases gets back
some information, e.g. the number of tasks currently in the queue.
The communication from a command line interface to the master process enables
modification of the ESM during runtime by adding or removing specific components
for instance. It could also be used to insert a visualization task to get an overview
about the current state of the model.

2.2.3 Data management
The master process manages all data that is being generated by tasks. This includes
tracking available memory space on all nodes of the allocation and moving data from
filling up nodes to shared storage as well as preloading data on nodes where data will
soon be needed by a task.
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Each node has a fixed amount of available memory which will be used both to cache
data for future tasks as well as for tasks that currently run on that node. A fixed
amount of the node’s memory will be designated as cache. The threshold is given by
a fixed percentage of the total memory of the node and should never be exceeded. In
case the memory cache overflows, the master process will have to move some data to
a shared storage and load it onto a node again at a later point in time. However, this
should be prevented as much as possible. For maximum efficiency the scheduler will
attempt to minimize data movement by keeping as few data in the cache as needed by
prioritizing tasks that work with data on nodes approaching the threshold so cached
data can be removed again.
If data is expected on a node where it is not yet available, the data should be moved or
copied to that node before the actual task requiring that data starts running on that
node. Preloading data efficiently can become very complex and will therefore just be
implemented in a very basic way in the scope of this work, namely simply preloading
the data as soon as the task execution starts. For it to work without introducing a
lot of idling however, accurate runtime estimation is required. While data is loaded
onto a node, another task can run on that node in the meantime. In the best case,
both the IO operation and task execution should take a similar amount of time to
prevent idling and amassment of data that is not currently used on a node.

2.3 Scheduling

The mathematical problem that has to be solved to perfectly schedule tasks across
multiple nodes seems to be a quite common problem at first. However, there are
very few exact solutions for this type of problem. As no algorithm exists that can
solve this problem in polynomial time, many people use heuristics to get close to an
optimal solution. While a near-optimal solution would still be acceptable, there is no
existing solution that solves this specific problem. To be more concrete, the problem
to solve is called a multiple variable size knapsack problem with item fragmentation
or as bin packing problems are more common a bin packing problem with constraints
with variable bin size with precedence with fragmentation. There are lots of solutions
for most sub-problems like the knapsack problem with fragmentation, however when
adding more constraints, there doesn’t seem to be a solution that solves all problems.
Therefore, the solution was to either develop a completely new algorithm or to im-
plement a simple scheduling algorithm that either only solves parts of the problem
or finds a solution for this problem not necessarily delivering a good solution in all
scenarios. For testing purposes a semi-optimal algorithm has been used within the
scope of this work.
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2.3.1 Formal definition
We are given a list I of m items and a set B of n bins. Each item ik ∈ I has a size
s(ik) ∈ Z+ and each bin bl has a capacity c(bl) ∈ Z+. The goal is to maximize the
accumulated size of all items packed into bins under the condition that the summed
size of items in a bin does not exceed the bins capacity. An item does also have a
profit pk assigned to it which results in another objective, namely to maximize the
accumulated profit of all items packed into bins. Items can be fragmented equally di-
viding its size. Fragmenting a task does however add an overhead, therefore reducing
the profit of the task by a constant value r for each fragment.

2.3.2 Sample scheduler
In this scenario nodes are the equivalent of bins and tasks the equivalent of items.
Each node has a maximum capacity that is given by the number of cores available
on that node. The size of a task is given by the number of MPI-processes that will
be used to run the task multiplied by the number of cores used by each process. The
maximum number of fragments that can be created of the task is therefore given by
the number of MPI-processes for the task. Tasks have a priority value that corre-
sponds to the profit of items in the formal definition of the problem.
As scheduling heuristic, a standard next-fit algorithm [18] has been implemented for
this sample scenario and was further improved to support multiple nodes (bins) as well
as precedence. The algorithm does not necessarily find the best possible solution and
other heuristics [heuristics] might be utilized to improve scheduling performance.
However, the implemented heuristic still schedules tasks successfully according to
their priority while trying to use as many resources as possible, therefore achieving
sufficient node utilization in this sandbox scenario.

2.4 Benchmarks
Several benchmarks will be used to evaluate the different aspects of this asynchronous
scheduler for ESM workflows such as performance, memory usage and flexibility.

2.4.1 Performance
To evaluate the performance aspect of the scheduler, statistics functionality has been
implemented, gathering information about the individual tasks. Concretely, for each
task it saves the time it entered the scheduling queue and measures the time it waited
in the queue as well as the time its execution took. Additionally, the total lifetime
and the node each task ran on will be output.
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In order to generate statistics for evaluating the sandbox scenario’s capabilities of
appliance in a real-world scenario with actual ESM components, the workflow de-
scribed above in section 2.1.3 was run utilizing varying numbers of nodes, one to
eight to be exact, in the Slurm job that was started for each run of the workflow.

When it comes to comparing the performance of the asynchronous scheduler to a
fictional synchronous version, the best case execution times were calculated for the
synchronous scenario of the workflow to compare these times to the execution times
of the asynchronous scenario which was measured using the Unix built-in time com-
mand.

2.4.2 Memory and IO efficiency
As described in sections 1.3.3.2 and 2.2.3, generated data will be stored in on-node
memory to reduce the time another task takes to load this data. If the task requiring
the data runs on the same node, the IO time implied by loading the data can be
reduced to the bare minimum.
To get an estimation for the total IO time of the workflow, the times data is moved
across nodes will be counted for workflow runs using one to eight nodes.

2.4.3 Scalability
There are two types of scalability that are used to characterize the efficiency gain of
a parallel workflow.
First, there is weak scalability which is the result of increasing the amount of available
resources without altering the problem size.
Second, strong scalability is defined by the change of execution times when increasing
both available resources and the problem size.

2.4.3.1 Weak scalability

The weak scalability of the sandbox workflow is determined by scaling up the number
of available nodes from one to eight nodes without altering the workflow described in
section 2.1.3.
Multiple time statistics will be gathered for each individual task to see how exactly
an increased number of nodes affects the execution times of individual tasks and the
overall performance of the scheduler.
For each task, the time a task entered the queue relative to the start of the workflow,
the queue- and runtime as well as its overall lifetime will be measured.
Afterwards, the number of tasks that run concurrently in a specific time interval are
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counted and compared when running with a single and eight nodes.

2.4.3.2 Strong scalability

For the strong scalability benchmark, two more workflows will be tested, both with a
larger size than the workflow presented above. For this benchmark, these two work-
flows as well as the existing one presented above will be run using one to eight nodes.
Both workflows use the same components as the smaller workflow, but use each com-
ponent twice instead.

The first scaled workflow as shown in figure 2.3 does not increase its complexity,
which means the amount of dependencies between tasks stays the same as for the
smaller workflow. In the following chapters, this workflow will be referred to as large
workflow.
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Figure 2.3: A scaled version of the sandbox workflow without additional
dependencies between tasks.

The second scaled workflow as shown in figure 2.4 does also increase its complexity
by adding more dependencies between tasks. In the following chapters, this workflow
will be referred to as large (complex) workflow.

2.4.4 Flexibility
As an indicator for flexibility of the workflow, the node-sharing capabilities will be
evaluated. These can be evaluated in the same way as for the weak scalability bench-
mark described in section 2.4.3.1 above. The times each task started running as well
as the runtime will be aggregated to check if or if applicable how many tasks are
running on a node simultaneously.
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Figure 2.4: A scaled version of the sandbox workflow with additional dependencies
between tasks.
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2.4.5 List of benchmarks

Benchmark Workflows used Description

Performance Small [1-8 nodes] Measuring execution times of the
asynchronous version and compar-
ing these times to theoretical values
for a synchronous version.

Memory and IO efficiency Small [1-8 nodes] Counting the number of times data
is moved across nodes to evaluate
the IO time reduction implied by
the optimizations that were made.

Weak scalability Small [1+8
nodes]

Measuring execution and queue
times of individual tasks and com-
paring them when running with one
and eight nodes respectively.

Strong scalability Small,
Large,
Large (complex)
[1-8 nodes]

Running three different workflows
and comparing their execution
times.

Flexibility Small [3 nodes] Measuring execution and queue
times of individual tasks using
three nodes and evaluating concur-
rency of tasks.

Table 2.1: List of all benchmarks with the respective workflows used by each
benchmark.
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3.1 Synchronous vs. asynchronous performance
The asynchronous version of the workflow has been run on the JUWELS supercom-
puter using one to eight compute nodes.
To compare the performance of the asynchronous version, runtime values for a hy-
pothetical synchronous version were calculated by adding the individual runtimes of
each component in the workflow as follows:
For the runtime of the read/write and the aggregation components, the average value
of the asynchronous runs were used. Both the constant and variable time component
runtimes were estimated by using the maximum time they could take which is 30
seconds for the constant time component and 50 seconds for the variable time com-
ponent. This estimation is based on the fact, that the synchronous scheduler does
schedule all tasks before execution which does not allow tasks that depend on these
tasks to be scheduled before their execution ended. For both algorithmic components
(variable and constant time), a 0.1 seconds extra time for IO operations has been
added as this turned out to be the average IO time for all operations performed in
this example scenario.
The ensemble which was run as part of the workflow consisted of 10 ensemble mem-
bers and the aggregation task. The ensemble members have been represented by the
constant time component, therefore running the constant time component ten times
in terms of the ensemble and once regularly as part of the workflow.

Component Runtime MPI processes CPU threads

read/write 4.0 1 12
Variable time 50.1 2 40
Constant time 30.1 1 20
Aggregation 1.5 1 20

Table 3.1: Runtime in seconds, number of spawned MPI processes and number of
CPU threads per process for all components.

To estimate the total time the synchronous version of the workflow will take, we
will assume the architecture, or more concretely the available nodes, will be used as
efficiently as possible.
When there is only a single node available, the order in which the components run
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is irrelevant. First, the read/write component will run for 4 seconds. Afterwards the
iterative process will be started, using 80 of the available 96 physical CPU threads
on the node running for 50+0.1 seconds. This component will be followed by the
ensemble, running two full batches of 4 tasks each, in total utilizing 80 threads twice,
while each batch takes 30+0.1 seconds until finishing execution. The third batch will
only run two ensemble members which leaves enough resources to also run the regular
constant time component, also running for 30.1 seconds. Finally, when all ensemble
members finished their execution, the aggregation component is run, taking 1.5 sec-
onds.
In total, the runtime adds up to 4 + (50 + 0.1) + 3 ∗ (30 + 0.1) + 1.5 = 145.9 seconds.
When instead of a single node there are two nodes available, the ensemble can start
running on the second node while the iterative component still runs on the first node.
The third batch of the ensemble run and the regular constant time component will
then start on the first node after the variable time component. This allows the ag-
gregation component to start running after 4 + 50.1 + 30.1 = 84.2 seconds. In total,
in this scenario the runtime adds up to 84.2 + 1.5 = 85.7 seconds.
The runtimes for other numbers of nodes can be calculated the same way and are
visualized in figure 3.1.

Figure 3.1: Performance of the asynchronous vs. synchronous version of the
workflow.

Figure 3.1 shows the measured performance of the asynchronous version of the
workflow compared to the hypothetical optimal synchronous performance. While the
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ideal synchronous performance is better for more than one node, the single-node per-
formance of the asynchronous version is remarkably better. When using many nodes,
the performance of both versions seem to almost converge.

3.2 Memory and IO efficiency
Strong emphasis has been laid on reduction of IO time by managing data as efficiently
as possible. To reduce data movement, generated data is temporarily stored in the
memory of the node it was produced on, making it available for future tasks running
on that node without any additional IO time in between. To quantify the actual
advantage implied by on-node data storage, the times data was moved across nodes
has been measured.

Number of nodes Data shared across nodes

1 1
2 8
3 12
4 13
5 13
6 14
7 13
8 16

Table 3.2: The number of times data has been copied from one node to another
relative to the number of nodes.

Table 3.2 shows the times data was shared across nodes which is proportional to
the IO time of the workflow. Therefore, the fewer times data has been shared, the
lower the IO time of the workflow has been.
The minimum IO time was therefore reached for a single node, where data has only
been loaded onto a node once, when initially loading data to the very first component,
namely the read/write component.

To evaluate the effective improvement of on-node data caching, the measured val-
ues have to be compared to the default case without this optimization. In the default
case, data will always be stored in a centralized storage and will be copied on a node
each time a task needs the data. The number of times data has to be loaded into
memory is equivalent to the number of tasks using any data as input, which in most
cases will be the total number of tasks. In this sandbox scenario, there are 28 tasks
loading data.
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When now comparing this value to the results shown in table 3.2, the effective im-
provement can be calculated for each number of nodes utilized. For two nodes, there
would be 3.5 times more data loads required if no optimization would have been used
and for 6 nodes there still was an improvement of about 50%.

3.3 Scalability

3.3.1 Weak scalability
As shown in figure 3.2, when running the small workflow using 8 nodes, no task is
run in the first 10 seconds while two tasks were run already when only using a single
node. In the following time intervals however, many more tasks, up to 11 more to
be concrete, were run when using 8 nodes compared to the execution using a single
node.
On average, about 10 tasks were run concurrently when using eight nodes while only
5 were run for the single-node configuration.

Figure 3.2: Tasks running concurrently on 1 and 8 nodes.

Multiple tables listing detailed information about each task can be found in chapter
5 in the appendix.
The starttime column of these tables presented there shows the point in time the task
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entered the queue relative to the start of the workflow. Adding up the values in the
queue- and runtime column for each task gives the value of the total lifetime column.
The last column tells about the node a respective task ran on.
When comparing the values for one and eight nodes in table 5.1 and 5.3 the most sig-
nificant difference can be found in the queuetime column. The time some components
spent in the queue was much longer than the time they spent running when using
a single node, while for the eight-node configuration almost all tasks had either an
insignificant queue time or one much lower than their runtime. The ensemble aggre-
gation presents the only task that had a fairly long queue time for both configurations.

3.3.2 Strong scalability
Remarkable differences in runtimes were measured for the large and large (complex)
workflows as shown in figure 3.3. When increasing the complexity of the large work-
flow by adding more dependencies, the workflow took about 2.5-4.5 times longer to
finish execution.
However, for an increasing number of nodes, the more complex variant of the scaled
workflow achieved the highest speedup with a value of 5.4 for 8 nodes. The less com-
plex large workflow did only achieve a speedup of 3.9 which, however, still was about
twice as much as the speedup of the small workflow with a value of 2.1.
In contrast to the small version and the complex variant of the large workflow, the
large workflow almost approached the ideal curve when using two or three nodes.

Figure 3.3: Bars showing runtime in seconds and lines representing speedup of three
workflows using a varying number of nodes.
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3.4 Flexibility
Figure 3.4 shows multiple tasks running concurrently when utilizing three nodes. In
the time interval ranging from about 10 to 40 seconds the most tasks were run simul-
taneously with times where 9 tasks are running at the same time. The variable time
algorithm task was split up and therefore ran on 2 different nodes.

Node Task

Scheduler initialization

Read/Write component

Constant time component

Ensemble component #1

Variable time algorithm

Ensemble component #8

Ensemble component #9

Ensemble aggregation

Variable time algorithm

Ensemble component #2

Ensemble component #3

Ensemble component #10

Ensemble component #4

Ensemble component #5

Ensemble component #6

Ensemble component #7

70

1

2

3

10 20 30 40 50 601

Time in seconds

Figure 3.4: Schedule of the workflow using three nodes each represented by a
different color.

Detailed time information for each task are listed in table 5.2 in the appendix.
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4 Discussion

4.1 Overhead of asynchronous scheduling
Compared to the synchronous scheduling approach the asynchronous one shows a
slightly worse performance of the asynchronous one for most node configurations as
shown in figure 3.1. While the asynchronous scheduling will most likely be faster
in more complex scenarios where it is difficult to synchronously schedule efficiently,
here, in the simple example sandbox scenario, the additional overhead makes a no-
ticeable difference in performance compared to the synchronous one that ideally has
zero overhead at runtime.
The overhead mainly comes from initialization by analyzing the architecture and
setting up the workflow and therefore increases when using more nodes. This can
be seen when comparing the start times of the very first task of the run with one
node (table 5.1) and the run with eight nodes (table 5.3) which shows a 3.5 seconds
later start time for the first task when using eight nodes. Although there undeniably
will be increased overhead when scaling up the allocation size, the overhead will be
decreased in relation to the total runtime when also scaling up the size of the workflow.

4.2 Scalability
Section 3.3.2 shows two possible ways to scale up the workflow. It is possible to either
just add additional components to the workflow without adding extra dependencies
which increases the size but not the complexity of the workflow or to scale up both
which adds a lot of complexity for each additional dependency between the compo-
nents.
In reality, each component will also add additional dependencies as in an ESM all
components typically are tightly coupled. Using an asynchronous scheduling approach
does not only enable unlimited scalability when it comes to the size of the ESM, but
even performs really well for large and especially complex workflows as seen in figure
3.3, where the complex version of the large workflow had a higher speedup value than
the less complex large one. For a synchronous version one would expect the opposite,
the more complex the problem the more difficult it will be to efficiently schedule all
components, especially with increasing node allocation size and when using a hetero-
geneous node allocation.
While scalability is theoretically unlimited when using asynchronous scheduling, it is
effectively limited by the scalability of the workflow itself, or more precisely by the
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scalability of all components that can run concurrently. If at one point in time only
few tasks can be run simultaneously due to the chosen dependencies, the scheduler
might be able to run all tasks using the maximum amount of resources possible for
these tasks without fully utilizing the upscaled node allocation.
The scalability of an asynchronous scheduler is, of course, also limited by the effi-
ciency of the scheduling algorithm itself. As already stated, an increasing problem
size also increases the overhead of the scheduler. Solutions to this challenge will be
discussed in section 4.4.

4.3 IO time optimization
The IO times could already be reduced by over 50% by reusing data stored on on-
node memory instead of storing all data on centralized storage like the scratch space
on Juwels ($SCRATCH). This could even be further optimized by completely relying
on on-node memory altogether. To exchange data across nodes, the current imple-
mentation uses the scratch space as intermediate stop before copying data on another
node because remote direct memory access (RDMA) is not available on the Juwels
supercomputer. An alternative to using RDMA would be using MPI to share data
between two tasks. Concretely, the MPI buffer on the receiving side needs to be set
to a memory address pointing to the space that is mounted as a temporary filesystem
on /dev/shm. That way, data will be copied directly from the memory on one node
to the memory of another node without having to explicitly move any data. MPI has
been optimized for most modern architectures, making up for maximum efficiency.
Such optimizations are however beyond the scope of this initial study.
When completely relying on on-node memory the total memory capacity might not
be sufficient for all the data that will be produced throughout the run of the work-
flow. When temporarily storing data on a node it has to be guaranteed that tasks
that currently run on that node will have sufficient memory capacity available for the
data they are producing. If the data size on a node comes close to the maximum
capacity it will be required to move some data on a centralized storage with a higher
capacity such as the scratch space on Juwels. While the HPST storage system on
Juwels functions as a cache-like storage that now allows directly writing to or reading
from it, in theory low-latency storages with moderate capacity would be the best
choice to temporarily store data that had to be moved from on-node memory due to
overflowing memory. Many supercomputer architectures offer such a storage, in the
end its a choice of design whether such low-latency storages are used as an option to
allow developers to optimize their applications or as a form of cache that automati-
cally optimizes loading times in many scenarios.
Another optimization could be to preload data on nodes where it will be needed by
future tasks running on that node. This would effectively reduce IO times to zero,
as there would be no time anymore where tasks have to wait for data movement. To
preload data efficiently it is required to accurately estimate the runtime of all tasks to
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see where data will be needed exactly at which times in the future. As the resources
could theoretically be assigned dynamically at runtime as well depending on the re-
sources currently available, this has to be considered as well when estimating runtime.
A possible way of solving this complex problem would be to use a machine-learning
based scheduler which will be discussed later in section 4.4.2.

4.4 Scheduling aspects

4.4.1 Exact solution vs. heuristics
Using an exact solver as scheduling algorithm can be problematic in large scenarios
when there are many tasks in the queue at some times. As no exact solver exists that
only scales with O(mp), overhead implied by scheduling will easily become unaccept-
ably high.
Therefore, using heuristics instead of exact solvers offers a reasonable solution in most
scenarios. A well-designed heuristic will be able to come very close to an optimal solu-
tion and will even work extremely well although not finding the best possible solution.
While this ultimately depends on the actual problem, in many cases specific group
of tasks can be scheduled interchangeably. If an ESM consists of a single directed
acyclic graph (DAG), tasks have to be scheduled in a predetermined order, however,
if it consists of multiple independent DAGs the scheduler can decide which tasks of
these graphs to run first. Eventually, all DAGs have to be run entirely.
Apart from the scheduling algorithm itself, the calculated priority of a task deter-
mines which tasks will be run first. The priority of a task takes many different factors
into account, such as the task’s size and its time in the queue and can therefore be
used to add additional rules, e.g. large tasks getting prioritized over small tasks as
small tasks can usually be scheduled more easily.
In contrast to typical asynchronous applications which mostly have no state, in ESMs
state is especially important, as each component alters the current state with its
computation and generated data. The timestep data belongs to must play a key
role in scheduling as components should be prioritized that calculate data for a time
period close to the current state. In asynchronous scheduling scenarios the calcu-
lation does not necessarily have to be strictly linear in time. The scheduler might
decide to first run components that calculate data further in time, before eventu-
ally coming back to tasks calculating present time steps as this scheduling behavior
might increase efficiency in some scenarios. Moreover, it would even be imaginable to
calculate some predictive data for some component that allows running subsequent
components depending on this data. In the meantime, this data would be reassured
and, if necessary, updated which would result in a cascade-like behavior, where all
dependent tasks would be re-run using the updated data. In many cases the pre-
dicted, lower accuracy data will be sufficient for all dependent calculations which in
the end saves valuable computation time. The flexibility of asynchronous scheduling
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allows making such dynamic decisions at runtime without any drawbacks, while for
synchronous scheduling such a scenario would practically be impossible to realize as
the number of performed calculations has to be strictly known beforehand.
There are different solutions to enforce a different scheduling depending on the prior-
ity. One example would be a high-priority queue with all tasks with a priority above
a certain threshold. This high-priority queue would have to be completely scheduled
before the regular queue would be included into the scheduling again. This threshold
value could even be determined dynamically, for example at a priority value where
there are only a few tasks with much higher priority than all other tasks.
Another solution would be to split the allocation into two parts, one for large tasks
only and one for all small tasks. However, this might result in an increased IO time
again as data locality could sometimes not be used for optimization anymore.

4.4.2 Machine-learning-based scheduler
As already mentioned in the previous chapters, finding an optimal scheduling solu-
tion is very difficult as the problem to solve is that complex that no optimal solutions
exists yet. Therefore, a machine-learning approach might be used to replace explicit
scheduling.
Two possible machine-learning scenarios come into consideration, supervised and re-
inforcement learning.
In the supervised scenario, data would be generated by existing schedulers that would
then be evaluated to produce labeled data which will subsequently be used to train
the machine-learning model.
The reinforcement learning scenario would work similarly, but would not need any
existing schedulers to work. This would however result in an increased training time.
A cost-function would be defined to evaluate the scheduling efficiency which would
then be used to run the scheduling model many times, optimizing its efficiency with
each generation. For this to work, the scheduler would need some concrete statistics
for each task, such as the estimated runtime, which would then be used as input
data. This is required to train the model on arbitrary tasks instead of letting the
scheduler learn the runtimes of the concrete tasks used for the training. To get a fast
and reliable runtime estimation for tasks, another machine-learning model could be
trained for example.

4.5 Flexibility
The biggest advantage of the asynchronous scheduling comes from its flexibility which
is based on the fact that scheduling is performed completely at runtime. Therefore, it
is possible to make changes to the component configuration and instantly test these
changes. Additionally, it enables adding or replacing arbitrary components at run-
time, thereby allowing for novel ESM applications, which would be difficult to realize
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in the traditional ESM set-up.
Next to workflow design, the resulting architecture flexibility of asynchronous schedul-
ing makes earth system modeling much more comfortable as not only the portability of
the workflow is assured, but now heterogeneous architectures can be used to their full
extent to make use of modern supercomputer development which introduces many
ways to accelerate computation such as additional GPUs on nodes while usually,
adaptation of model codes to new architectures tends to be a quite demanding devel-
opment [19]. When making use of synchronous workflows, the modeler himself has to
take care of resource assignment when he wants to make use of these accelerators. As
for complex workflows there is no way to accurately estimate at which times resources
will be available, these accelerators could not be used efficiently. When using asyn-
chronous scheduling instead, this will be handled automatically by the scheduler with
much higher efficiency. Even adding support for these accelerators to existing ESM
components is simplified using the asynchronous approach as there is no gigantic,
monolithic codebase as it would be the case when using the traditional, synchronous
approach. Components could simply be substituted by the version with accelerator
support after integrating it into its code without having to rebuild the whole model.
When trying to modify an existing model it might not even be possible to easily ex-
tract components again in the synchronous case.
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5 Conclusion and Outlook
The use of asynchronous scheduling enables more flexibility when building and de-
ploying ESM workflows compared to legacy ESM workflows that usually run syn-
chronously. The increased modularity allows running the workflow on heterogeneous
architectures that supercomputers tend to adapt lately. This comes at the cost of
some performance reduction, which, however, will not be prohibitive under many cir-
cumstances as shown by the results from this thesis. Fully optimized synchronous
workflows will, of course, run faster on the specific architecture they were built for,
due to no additional overhead at runtime. The asynchronous version on the other
hand will optimize itself at runtime and therefore runs as efficiently as possible on any
architecture without having to optimize the workflow manually. Increased scheduling
flexibility furthermore allowed optimizing IO times by reusing data stored on on-node
memory, reducing IO times by more than 50%.
Altogether, the improvements made up for high scalability, showing very high effi-
ciency gain for complex workflows when increasing the amount of available resources.
This proof of concept therefore showed, that asynchronous scheduling may be able to
solve the challenges introduced by the upcoming exascale ESM development.

In the future, it will be interesting to create an actual ESM workflow using the
asynchronous scheduler which would really test the flexibility, usability, and perfor-
mance of this novel approach to earth system modeling.
After creating such a workflow, the performance and usability should be compared
to other modern ESM workflows like CESM2 to see if this approach is an actual im-
provement over other development approaches.
Apart from a function-complete CLI, an API to the scheduler might be provided to
get information such as advanced statistics, the current state of the queue, or special
events that occurred that all might lead to workflow alterations or even optimization
at runtime.
Currently, only slurm-based systems are supported, for full flexibility however, the
workflow should be able to run on any architecture and system.
Testing configurations with both GPUs and CPUs was beyond the scope of this the-
sis. However, it is clear that such configurations can be easily realized using an
asynchronous scheduling approach, while they are much more difficult to implement
in a synchronous set-up. In an asynchronous scenario, tasks might even give the
scheduler the option to use CPUs and GPUs interchangeably, allowing the scheduler
to decide at runtime which resources to assign to which task based on what resources
are currently available.
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Data broker task source code

1 # IMPORTS − Start
2 import subprocess
3 import sys
4 import os
5 from shutil import copyfile
6
7 from messaging.grpc_client import BrokerGRPCClient
8 from utils.data import PathManager, DataPointer
9 # IMPORTS − End

10
11
12 def main():
13 if len(sys.argv) < 5:
14 exit(1)
15
16 tasks_path = str(sys.argv[1]) # Path to the directory containing all tasks
17 task_id = str(sys.argv[2]) # Shortid of the task
18 task_node = str(sys.argv[3]) # Node the task generated data on
19 data_path = str(sys.argv[4]) # Path to the data file
20 master_node = str(sys.argv[5]) # Ip address of the master node for gRPC connection
21
22 # Creating a DataPointer object using the command line argument information
23 dp = DataPointer(task_node, data_path)
24
25 grpc_client = BrokerGRPCClient(master_node)
26
27 # Getting all tasks that are interested in this data
28 simple_deps, ensemble_deps = grpc_client.request_init(task_id)
29
30 def eval_dep(dep, requirements):
31 ”””
32 Run the evaluation for a given dependency
33 ”””
34 exec_strings = list()
35 for requirement in requirements:
36 exec_strings.append(”module load ” + requirement + ” &&”)
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37 exec_strings.append(dep.analysis.replace(”INPUT_PATH”, data_path))
38 return_code = subprocess.call(” ”.join(exec_strings), shell=True, stdout=subprocess.PIPE, cwd=os.path.join(tasks_path, dep.name), env=os.environ.copy())
39 return return_code
40
41 interested_tasks = list()
42 ensembles = list()
43
44 # Evaluate all dependencies that might trigger execution of regular (simple) tasks
45 for simple_dep in simple_deps:
46 if eval_dep(simple_dep, simple_dep.requirements) == 0:
47 interested_tasks.append(simple_dep.name)
48 ensembles.append(False)
49
50 # Evaluate all dependencies that might trigger execution of an ensemble
51 for ensemble_dep in ensemble_deps:
52 if eval_dep(ensemble_dep, ensemble_dep.analysis_requirements) == 0:
53 interested_tasks.append(ensemble_dep.name)
54 ensembles.append(True)
55
56 # Send all tasks that are interested (positive evaluations) to the master process
57 grpc_client.send_tasks_interested(interested_tasks, ensembles, task_id, task_node, data_path)
58
59
60 if __name__ == ’__main__’:
61 main()

Listing 5.1: read_write.py
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Detailed list of task execution times

One node
Taskname Starttime Total lifetime Queuetime Runtime
Read write 6.467 3.205 2.275 0.929
Broker 9.672 1.487 0.001 1.487
Iterative algorithm 11.112 16.867 0.001 16.866
Ensemble #1 11.112 48.692 16.874 31.818
Ensemble #2 11.112 48.698 16.877 31.820
Ensemble #3 11.112 48.767 16.881 31.896
Ensemble #4 11.112 1:20.572 48.697 31.874
Ensemble #5 11.112 1:20.591 48.708 31.883
Ensemble #6 11.112 1:20.621 48.784 31.837
Ensemble #7 11.112 1:20.927 48.769 31.158
Ensemble #8 11.112 1:52.461 1:20.595 31.866
Ensemble #9 11.112 1:52.467 1:20.623 31.843
Ensemble #10 11.112 1:52.483 1:20.574 31.909
Exact algorithm 13.342 32.739 1.035 31.704
Broker 27.980 0.518 0.003 0.515
Broker 59.811 1.024 0.007 1.016
Broker 59.805 1.038 0.001 1.037
Broker 59.890 1.008 0.001 1.007
Broker 59.880 1.059 0.001 1.058
Broker 1:31.685 0.932 0.005 0.931
Broker 1:31.703 0.917 0.003 0.916
Broker 1:31.734 0.934 0.005 0.933
Broker 1:32.039 0.733 0.001 0.733
Broker 2:03.574 0.844 0.003 0.843
Broker 2:03.579 0.838 0.001 0.835
Broker 2:03.596 0.822 0.001 0.821
Ensemble aggregation 1:46.943 20.165 17.651 2.514
Broker 2:04.841 0.498 0.002 0.495

Table 5.1: Detailed comparison of execution times of all tasks run in the example
workflow using one node as well as the node the task ran on.
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Three nodes
Taskname Starttime Total lifetime Queuetime Runtime Node/-s
Read write 4.443 1.858 0.988 0.869 1
Broker 6.301 9.448 0.003 9.445 1
Exact algorithm 7.660 32.729 1.024 31.705 1
Ensemble #1 7.660 33.714 2.025 31.689 1
Iterative algorithm 7.660 51.713 0.001 51.712 1,2
Ensemble #2 7.660 34.821 3.032 31.789 2
Ensemble #3 7.660 35.796 4.035 31.760 2
Ensemble #4 7.660 36.821 5.041 31.779 3
Ensemble #5 7.660 37.800 6.031 31.769 3
Ensemble #6 7.660 38.782 7.030 31.752 3
Ensemble #7 7.660 39.808 8.043 31.765 3
Ensemble #8 7.660 1:05.495 33.728 31.767 1
Ensemble #9 7.660 1:06.508 34.737 31.770 1
Ensemble #10 7.660 1:07.584 35.830 31.753 2
Broker 40.390 2.067 0.002 2.064 1
Broker 41.375 1.082 0.015 1.067 1
Broker 42.482 1.051 0.000 1.050 1
Broker 43.456 0.536 0.035 0.501 1
Broker 44.482 0.498 0.000 0.497 1
Broker 45.461 0.495 0.004 0.490 1
Broker 46.443 0.509 0.004 0.504 1
Broker 47.469 0.493 0.003 0.490 1
Broker 59.374 0.500 0.000 0.499 1
Broker 1:13.156 0.494 0.003 0.491 1
Broker 1:14.169 0.495 0.000 0.495 1
Broker 1:15.244 0.489 0.005 0.484 1
Ensemble aggregation 1:15.667 0.500 0.001 0.499 1
Broker 1:16.168 0.496 0.004 0.491 1

Table 5.2: Detailed comparison of execution times of all tasks run in the example
workflow using three nodes as well as the node the task ran on.
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Taskname Starttime Total lifetime Queuetime Runtime Node/-s
Read write 10.030 1.904 1.005 0.899 1
Broker 11.935 12.740 0.001 12.739 1
Exact algorithm 13.342 32.739 1.035 31.704 1
Iterative algorithm 13.342 51.707 0.003 51.704 2
Ensemble #1 13.342 33.750 2.044 31.706 1
Ensemble #2 13.342 34.842 3.076 31.765 1
Ensemble #3 13.342 35.823 4.091 31.732 1
Ensemble #4 13.342 36.916 5.135 31.781 3
Ensemble #5 13.342 37.957 6.169 31.787 3
Ensemble #6 13.342 38.991 7.200 31.790 3
Ensemble #7 13.342 40.045 8.235 31.810 3
Ensemble #8 13.342 41.034 9.254 31.779 4
Ensemble #9 13.342 42.050 10.263 31.787 4
Ensemble #10 13.342 43.016 11.284 31.731 4
Broker 46.082 0.509 0.001 0.508 1
Broker 47.092 0.504 0.003 0.500 1
Broker 48.184 0.500 0.001 0.499 1
Broker 49.166 0.505 0.004 0.501 1
Broker 50.258 1.951 0.005 1.946 1
Broker 51.300 0.910 0.003 0.907 1
Broker 53.388 1.520 0.005 1.515 1
Broker 52.333 22.310 0.004 22.305 1
Broker 55.392 19.298 0.001 19.297 1
Broker 54.376 20.314 0.003 20.311 1
Broker 56.359 18.333 0.003 18.329 1
Broker 56.943 20.165 17.651 2.514 1
Ensemble aggregation 01:05.050 12.071 9.545 2.525 1
Broker 01:17.128 1.619 0.001 1.618 1

Table 5.3: Detailed comparison of execution times of all tasks run in the example
workflow using eight nodes as well as the node the task ran on.
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